Cannabinoid conditioned reward and aversion: behavioral and neural processes.
نویسندگان
چکیده
The discovery that delta-9-tetrahydrocannabinol (Δ(9)-THC) is the primary psychoactive ingredient in marijuana prompted research that helped elucidate the endogenous cannabinoid system of the brain. Δ(9)-THC and other cannabinoid ligands with agonist action (CP 55,940, HU210, and WIN 55,212-2) increase firing of dopamine neurons and increase synaptic dopamine in brain regions associated with reward and drug addiction. Such changes in cellular processes have prompted investigators to examine the conditioned rewarding effects of the cannabinoid ligands using the place conditioning task with rats and mice. As reviewed here, these cannabinoid ligands can condition place preferences (evidence for rewarding effects) and place aversions (evidence for aversive qualities). Notably, the procedural details used in these place conditioning studies have varied across laboratories. Such variation includes differences in apparatus type, existence of procedural biases, dose, number of conditioning trials, injection-to-placement intervals, and pre-training drug exposure. Some differences in outcome across studies can be explained by these procedural variables. For example, low doses of Δ(9)-THC appear to have conditioned rewarding effects, whereas higher doses have aversive effects that either mask these rewarding effects or condition a place aversion. Throughout this review we highlight key areas that need further research.
منابع مشابه
Endocannabinoid signaling system and brain reward: emphasis on dopamine.
The brain's reward circuitry consists of an "in series" circuit of dopaminergic (DA) neurons in the ventral tegmental area (VTA), nucleus accumbens (Acb), and that portion of the medial forebrain bundle (MFB) which links the VTA and Acb. Drugs which enhance brain reward (and have derivative addictive potential) have common actions on this core DA reward system and on animal behaviors relating t...
متن کاملCannabinoid Regulation of Brain Reward Processing with an Emphasis on the Role of CB1 Receptors: A Step Back into the Future
Over the last decades, the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain-reward circuits and the regulation of motivational processes. Importantly, behavioral studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, coca...
متن کاملCannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.
Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related ...
متن کاملRegulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals.
The endocannabinoid system has been implicated in the regulation of a variety of physiological processes, including a crucial involvement in brain reward systems and the regulation of motivational processes. Behavioral studies have shown that cannabinoid reward may involve the same brain circuits and similar brain mechanisms with other drugs of abuse, such as nicotine, cocaine, alcohol and hero...
متن کاملDelta9-tetrahydrocannabinol, but not the endogenous cannabinoid receptor ligand anandamide, produces conditioned place avoidance.
Although exogenous cannabinoid ligands such as delta9-tetrahydrocannabinol (THC) have been implicated in reward-related learning and aversion, the hedonic effects of the endogenous cannabinoid agonist anandamide (arachidonylethanolamide) have never been assessed. Thus, the effects of anandamide were tested in a place conditioning task. Male Wistar rats received THC (0.0-8.0 mg/kg) or anandamide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS chemical neuroscience
دوره 1 4 شماره
صفحات -
تاریخ انتشار 2010